Constraining snowmelt in a temperature-index model using simulated snow densities

نویسندگان

  • Kathryn J. Bormann
  • Jason P. Evans
  • Matthew F. McCabe
چکیده

Current snowmelt parameterisation schemes are largely untested in warmer maritime snowfields, where physical snow properties can differ substantially from the more common colder snow environments. Physical properties such as snow density influence the thermal properties of snow layers and are likely to be important for snowmelt rates. Existing methods for incorporating physical snow properties into temperature-index models (TIMs) require frequent snow density observations. These observations are often unavailable in less monitored snow environments. In this study, previous techniques for end-ofseason snow density estimation (Bormann et al., 2013) were enhanced and used as a basis for generating daily snow density data from climate inputs. When evaluated against 2970 observations, the snow density model outperforms a regionalised density-time curve reducing biases from 0.027 g cm 3 to 0.004 g cm 3 (7%). The simulated daily densities were used at 13 sites in the warmer maritime snowfields of Australia to parameterise snowmelt estimation. With absolute snow water equivalent (SWE) errors between 100 and 136 mm, the snow model performance was generally lower in the study region than that reported for colder snow environments, which may be attributed to high annual variability. Model performance was strongly dependent on both calibration and the adjustment for precipitation undercatch errors, which influenced model calibration parameters by 150–200%. Comparison of the density-based snowmelt algorithm against a typical temperature-index model revealed only minor differences between the two snowmelt schemes for estimation of SWE. However, when the model was evaluated against snow depths, the new scheme reduced errors by up to 50%, largely due to improved SWE to depth conversions. While this study demonstrates the use of simulated snow density in snowmelt parameterisation, the snow density model may also be of broad interest for snow depth to SWE conversion. Overall, the study responds to recent calls for broader testing of TIMs across different snow environments, improves existing snow modelling in Australia and proposes a new method for introducing physically-based constraints on snowmelt rates in data-poor regions. 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps

[1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using differe...

متن کامل

شبیه سازی سطح پوشش برف و رواناب ناشی از ذوب آن در حوزه ‌آبخیز هرو - دهنو در استان لرستان

Given the importance of snow, it seems necessary to predict its resultant runoff for optimized usage. In addition, due to snowbound regions cloudiness in winter season, the notice of snow cover area (SCA) using satellite images is difficult. Hence, to help better water resources managing in mountainous areas using supplementary methods for simulating the SCA is necessary. As a case study, Horo-...

متن کامل

Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China

The feasibility of simulating daily snowmelt runoff in an arid mountain watershed with limited hydro-meteorological measurements was explored with an enhanced temperature-index snowmelt runoff model (SRM) in which the degree-day factor (DDF) is varied on the basis of shortwave solar radiation and snow albedo. The model satisfactorily simulated snowmelt runoff with a model efficiency of 0Ð64 for...

متن کامل

Improving the Performance of Temperature Index Snowmelt Model of SWAT by Using MODIS Land Surface Temperature Data

Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based...

متن کامل

Comparative Analyses of Physically Based Snowmelt Models for Climate Simulations

A comparative study of three snow models with different complexities was carried out to assess how a physically detailed snow model can improve snow modeling within general circulation models. The three models were (a) the U.S. Army Cold Regions Research and Engineering Laboratory Model (SNTHERM), which uses the mixture theory to simulate multiphase water and energy transfer processes in snow l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014